Search results for "BRIC type 2"

showing 1 items of 1 documents

A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC …

2019

Drug-induced liver injury (DILI) is a matter of concern in the course of drug development and patient safety, often leading to discontinuation of drug-development programs or early withdrawal of drugs from market. Hepatocellular toxicity or impairment of bile acid (BA) metabolism, known as cholestasis, are the two clinical forms of DILI. Whole-body physiology-based modelling allows a mechanistic investigation of the physiological processes leading to cholestasis in man. Objectives of the present study were: (1) the development of a physiology-based model of the human BA metabolism, (2) population-based model validation and characterisation, and (3) the prediction and quantification of alter…

0301 basic medicineEXPRESSIONPBPKLIVERmedicine.drug_classPhysiologyBenign Recurrent Intrahepatic CholestasisPopulationBIOMARKERScomputational modellingPhysiologyDIAGNOSISlcsh:Physiology03 medical and health scienceschemistry.chemical_compoundPHARMACOKINETIC MODEL0302 clinical medicineCholestasisPhysiology (medical)Glycochenodeoxycholic acidMedicineddc:610educationEnterohepatic circulationKINETICSOriginal ResearchLiver injuryINTRAHEPATIC CHOLESTASISbile acidseducation.field_of_studyBile acidlcsh:QP1-981business.industryBRIC type 2medicine.diseaseTRANSPORTERS3. Good health030104 developmental biologychemistryToxicitySIMULATION030211 gastroenterology & hepatologyENTEROHEPATIC CIRCULATIONDILIbusinesscholestasisFrontiers in Physiology
researchProduct